Structural abnormalities of the cornea and lid resulting from collagen V mutations.
نویسندگان
چکیده
PURPOSE Type V collagen forms heterotypic fibrils with type I collagen and accounts for 10% to 20% of corneal collagen. The purpose of this study was to define the ocular phenotype resulting from mutations in the type V collagen genes COL5A1 and COL5A2 and to study the pathogenesis of anomalies in a Col5a1-deficient mouse. METHODS Seven patients with classic Ehlers-Danlos syndrome (EDS) due to COL5A1 haploinsufficiency and one with an exon-skipping mutation in COL5A2 underwent an ocular examination, corneal topography, pachymetry, and specular microscopy. A Col5a1-haploinsufficient mouse model of classic EDS was used for biochemical and immunochemical analyses of corneas. Light and electron microscopy were used to quantify stromal thickness, fibril density, fibril structure, and diameter. RESULTS Five males and three females (mean age, 26 +/- 13.57 years; range, 11-52) were studied. All patients had "floppy eyelids." The corneas of all eyes were thinner (mean corneal thickness: 435.75 +/- 12.51 microm) when compared with control corneas (568.89 +/- 28.46 microm; P < 0.0001). In the Col5a1+/- mouse cornea, type V collagen content was reduced by approximately 49%, and stromal thickness was reduced by approximately 26%. Total collagen deposition in Col5a1(+/-) corneas also was reduced. Collagen fibril diameters were increased, but fibril density was decreased throughout the stroma at all developmental stages. CONCLUSIONS In the eye, COL5A1 and COL5A2 mutations manifest as abnormally thin and steep corneas with floppy eyelids. Mechanisms involved in producing the latter anomalies probably involve altered regulation of collagen fibrillogenesis due to abnormalities in heterotypic type I/V collagen interactions similar to those observed in the Col5a1+/- mouse cornea.
منابع مشابه
Keratoconus experimentally produced in mice using collagenase
Introduction: Keratoconus is a relatively common disease of cornea in which structural changes within the cornea cause it to thin and change to a conical shape and scar at the central portion of cornea. So far, few methods and drug treatments were introduced due to both lack of accepted animal models to induce experimental keratoconus and limitation of research in human considering ethical issu...
متن کاملHistopathological Finding of Cornea after Collagen Cross-Linking Using Riboflavin and Ultraviolet A in Rabbit
Purpose: To evaluate the histopathological changes of the cornea in rabbit corneas after accelerated collagen cross-linking. Methods: Right eyes of 7 adult New Zealand albino rabbits weighing 1.5 to 2.0 kg were studied. Right eyes of all animals were in the treatment group and left eyes were in the control group. The epithelium of all right eyes was removed and was crossed-linked with riboflavi...
متن کاملSecond-harmonic imaging microscopy of normal human and keratoconus cornea.
PURPOSE The purpose of this study was to evaluate the ability of second-harmonic imaging to identify differences in corneal stromal collagen organization between normal human and keratoconus corneas. METHODS Six normal corneas from eye bank donors and 13 corneas of patients with keratoconus, obtained after penetrating keratoplasty were examined. A femtosecond titanium-sapphire laser with 800-...
متن کاملMutations in type I collagen genes resulting in osteogenesis imperfecta in humans.
Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with ...
متن کاملHyperglycemia-Induced Abnormalities in Rat and Human Corneas: The Potential of Second Harmonic Generation Microscopy
BACKGROUND Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people world...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2006